

جامعة الزيتونــة الأردنيـة Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and Information Technology

"حيث تصبح الرؤية واقعاً" "When Vision Becomes Reality " عراقة وجودة" "Tradition and Quality"

الخطة الدراسية وتحديثها / قسم علم الحاسوب	QF01/0408-4.0		
علم الحاسوب	التخصص	2022/2021	رقم الخطة الدراسية

علم الحاسوب				التخصص	20	022/2021	رقم الخطة الدراسية
تحليل وتصميم الخوارزميات المتقدمة Advanced Algorithms Design & Analysis		اسم المادة الدراسية		0102721		رقم المادة الدراسية	
Data Structures تراكيب البيانات		المتطلب السابق للمادة		3		عدد الساعات المعتمدة	
🗌 متطلب	√ متطلب	□ متطلب عائلة	🗖 متطلب كلية	لماب	🔲 متو	🗖 متطلب	نوع المادة الدراسية
تخصص اختياري	تخصص اجباري	تخصص/ مساند	اختياري اجباري		جامعة	جامعة اجباري	توع العادة الدراسية
	□ تعلم وجاهي		√ تعلم مدمج		🗌 تعلم الكتروني كامل		نمط تدريس المادة
	🛘 2 وجاهي	غير متزامن)	□ (1 متزامن: 1 غير متزامن) ✓ (2 وجاهي: 1 غير متزا		النموذج التدريسي		

معلومات عضو هيئة التدريس والشعب الدراسية التعبأ في كل فصل دراسي من قبل مدرس المادة)

البريد الالكتروني	رقم الهاتف	رقم المكتب	الرتبة الأكاديمية	الاسم	
ayman@zuj.edu.jo	391	09/330	أستاذ مشارك	د.أيمن محمود عبد الله	
✓	✓ ✓		(اليوم/الساعة):	الساعات المكتبية	
النموذج المعتمد	نمط تدريسها	عدد الطلبة	مكانها	وقتها	رقم الشعبة
1:2	مدمج				1

الوصف المختصر للمادة الدراسية

This course aims to introduce the concepts of algorithm design and analysis. Its topics cover the following concepts: Solving summations and recurrences. Efficiency and complexity analysis. Tree terminology and algorithms. Binary trees. Hashing methods and solving collision in hashing. Heaps and heap sort. Insertion sort, merge sort, and quicksort. Graph terminology, representation, and algorithms. Algorithms of Prim, Kruskal, Dijkstra, and Floyd. Breadth-first and depth-first search. The greedy, divide-and-conquer, and dynamic programming techniques.

مصادر التعلم

Anany Levitin 4 th Ed., 2019.	معلومات الكتاب المقرر			
1. T.H. Corme Algorithms, 3 rd 2. Jay Wengro Algorithms: Le 3. Heman Jain JAVA, 1 st Ed.,	مصادر التعلم المساندة			
https://elearn	المواقع الالكترونية المساندة			
🗆 أخرى	✓ منصة تعليمية افتراضية	🗖 مختبر / مشغل	√ قاعة دراسية	البيئة المادية للتدريس
	التجهيزات والبرمجيات اللازمة			
				دعم ذوي الاحتياجات الخاصة

للحصول على الدعم الفني/التقني

مخرجات تعلم المادة الدراسية

(K= Knowledge, S= Skills, C= Competences)

		.9			
رمز مخرج تعلم البرنامج المرتبط	مخرجات تعلم المادة	الرقم			
	المعارف				
MK4, MK5	Analyzing efficiency of algorithms and comparing time and memory efficiency of different algorithms.	K1			
MK4	Using Big-O, Ω , and Θ to represent efficiency levels of algorithms.	K2			
MK4, MK5	Applying basic searching and sorting algorithms.	K3			
	المهارات				
MS1, MS4	Ability to apply hashing methods for data storage and retrieval.	S 1			
MS1, MS4	Ability to represent graphs dynamically and with arrays.				
MS1, MS4	Ability to design and applying basic algorithms for solving graph problems.				
MS4	Ability to recognize the main classes of computational complexity.	S4			
MS1, MS4	Ability to choose appropriate data structures and designing algorithms for solving the problems discussed and other for related problems	S5			
الكفايات					
MC2	Understanding computational complexity	C1			
MC2	Performing computation complexity calculation	C2			
MC3, MC4	Understanding and analyzing sorting algorithms	C3			
MC2	Understanding and analyzing graph algorithms	C4			

آليات التقييم المباشر لنتاجات التعلم

التعلم الوجاهي (مواد عملية)	التعلم الوجاهي (مواد نظرية)	التعلم المدمج	التعلم الالكتروني	نوع التقييم/ نمط التعلم
%30	%40	%30	%30	امتحان منتصف الفصل
%30	%10	0	0	المشاركة/ التطبيقات العملية
0	0	%30	%30	النشاطات التفاعلية غير المتزامنة
%40	%50	%40	%40	الامتحان النهائي

ملاحظة: النشاطات التفاعلية غير المتزامنة هي النشاطات والمهام والمشاريع والواجبات والأبحاث والدراسات والمشاريع والعمل ضمن مجموعات طلابية...الخ، والتي ينفذها الطالب ذاتياً، بواسطة المنصة الافتراضية دون لقاء مباشر مع مدرس المادة.

جدول اللقاءات المتزامنة/ الوجاهية وموضوعاتها

		·	
المرجع**	أسلوب التعلم*	الموضوع	الأسبوع
Ref.1: 3-39, 475-491	Lecture & Discussion	Introduction: specifications of an algorithm, mathematical background. Time and memory efficiency of algorithms: analyzing time and memory requirements of algorithms.	1
Ref.1: 41-95	Lecture & Discussion	Efficiency levels of algorithms: asymptotic growth rates of functions, formal definitions of Big-O, Ω and Θ classes, analysis of iterative algorithms, analysis of recursive algorithms.	2
Ref.1: 61-98, 104-106,	Lecture & Discussion	Searching unsorted and sorted lists: brute force method, linear search, its worst- and	3

المرجع**	أسلوب التعلم*	الموضوع	الأسبوع
150-152		average-case time efficiency, binary search and its analysis.	
Ref.1: 61-95, 150-152, 475-491	Lecture & Discussion	Searching unsorted and sorted lists: solving recursive equations, optimal algorithms, optimality of linear and binary search algorithms for unsorted and sorted lists.	4
Ref.1: 269-276 Ref.1: 98-100	Lecture & Discussion	Hashing method: hash tables, hash functions, resolving collisions, searching, reading and writing in hash tables. Simple sorting algorithms: selection sort and its analysis.	5
Ref.1: 131-138	Lecture & Discussion	Simple sorting algorithms: insertion sort and its analysis. Review of the previous topics, solutions of problems.	6
Ref.1: 169-175	Lecture & Discussion	Divide and conquer technique: recursive sorting algorithms, merging of sorted lists and its analysis, merge sort algorithm, tracing and analysis of merge sort.	7
Ref.1: 176-182	Lecture & Discussion	Divide and conquer technique: quicksort idea, quicksort algorithm, tracing and analysis of quicksort.	8
Ref.1: 25-39, 182-186	Discussion	Graphs and trees: graph types and their static and dynamic representations, space complexity. Midterm Exam.	9
Ref.1: 226-234	Lecture & Discussion	Heapsort: min-heaps and max-heaps, properties, representation, heapsort algorithm, tracing and analysis of heapsort.	10
Ref.1: 122-130	Lecture & Discussion	Graph traversals: depth-first search and breadth-first search of graphs. Review of the previous topics, solution of problems.	11
Ref.1: 315-333	Lecture & Discussion	Greedy algorithms for graph problems: greedy technique, minimum spanning tree (MST), Prim's MST algorithm, Kruskal's MST algorithm, analysis of MST algorithms.	12
Ref.1: 333-338	Lecture & Discussion	Greedy algorithms for graph problems: shortest paths in graphs, Dijkstra's shortest-path algorithm.	13
Ref.1: 283-313 Ref.1: 401-411	Lecture & Discussion	Dynamic programming technique: dynamic programming concept, Fibonacci numbers example. Warshall-Floyd algorithm for transitive closure. Computational complexity: Classes of complexity: P, NP, NP-hard, NP-complete, examples of NP-complete problems.	14
	Discussion	Term paper presentations	15
		Final Exam	16

^{*} اساليب التعلم: محاضرة، تعلم معكوس، تعلم من خلال المشاريع، تعلم من خلال حل المشكلات، تعلم تشاركي ... الخ.

^{**} المرجع: صفحات في كتاب، قاعدة بيانات، محاضرة مسجلة، محتوى على منصة التعلم الإلكتروني، فيديو، موقع...الخ

جدول النشاطات التفاعلية غير المتزامنة (في حال التعلم الالكتروني والتعلم المدمج)

النتاجات المتوقعة	المرجع	المهمة / النشاط	الأسبوع
Submitted Work	Ref.1: 3-95, 475-491	Compute time and space complexity of iterative algorithms	1
Submitted Work	Ref.1: 3-95, 475-491	Solve recurrence relations	2
Submitted Work	Electronic resources	Select a topic for the term paper and find some references	3
Submitted Work	Ref.1: 61-95, 150-152, 475-491	Analyze average-case complexity	4
Submitted Work	Electronic resources	Write an outline of the term paper	5
Submitted Work	Ref.1: 98-100, 131-138, 269-276	Analyze time and space complexity of some simple sorting algorithms	6
Submitted Work	Electronic resources	Update the list of references of the term paper	7
Submitted Work	Ref.1: 169-182	Apply divide and conquer techniques	8
Discussion	Ref.1	Midterm Exam Review	9
Submitted Work	Ref.1: 226-234	Apply min-heaps and max-heaps	10
Submitted Work	Ref.1: 122-130	Perform depth-first search and breadth-first search of graphs	11
Submitted Work	Electronic resources	Write the first draft of the paper without the abstract and conclusion	12
Submitted Work	Electronic resources	Write a full draft of the term paper	13
Submitted Work	Ref.1: 313-338	Apply graph minimization algorithms	14
Submitted Work	Electronic resources	Make a class presentation of the term paper	15