

QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ physics Department

Study plan No.	2021/2022		University Specialization		Bachelor of p	physics
Course No.	0150111		Course name		General Physics 1	
Credit Hours	3		Prerequisite/ Co-requisite		None	
Course type	MANDATORY UNIVERSITY REQUIREMENT	UNIVERSITY ELECTIVE REQUIREMENTS	□ FACULTY MANDATORY REQUIREMENT	□ Support course family requirements	✓ Mandatory requirements	Elective Elective Elective
Teaching style	□ Full online lea	arning	✓ Blende	ed learning	□Tradit lear	tional ning
Teaching model	□ 1 Synchronou asynchronous		✓ 1 face t asynchi	o face : 1 ronous	□2 Trac	litional

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-n	nail
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

This course describe the basic principal of classical mechanics. First it describe the measurements of physics. The motion in one dimensions. Then it describe the vectors, scalars and application in two dimensions. This course concentrate on the Laws of motion that is Newton's Laws of motion with application to circular motion. The course continue on the laws of conservation of energy and momentum with application on collision. Finally some introduction on the rotation of rigid body motion.

Learning resources

Course book	Physics for Scientists and Engineers 9th ed. 2015, Serway			
information				
(Title, author, date of				
issue, publisher etc)				
Supportive learning resources	1. Fundamental of Physics, by Haliday & Resnik 2015			
(Books, databases,	2. University Physics, by Sears & Zemanisky, 2015.			
periodicals, software,	2. Chronolog i hjörös, öj öödiö & Zonidinöky, 2015.			
applications, others)				
Supporting websites	• https://en.wikipedia.org/wiki/Physics			
	• https://ocw.mit.edu/courses/physics/8-01sc-classical-mechanics-fall-2016/			
The physical	✓ Class room □ labs ✓ Virtual educational □ Others			
environment for	platform			
teaching				
Necessary equipment				
and software				
Supporting people				

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ physics Department		
with special needs			
For technical support			

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program learning output code
	Knowledge	
K1	Define the physical quantities, physical phenomena, and basic principles of physics related to the course	MK 1
K2	Express the physical laws related to the course using mathematics.	MK 4
K3	Record the physical quantity at the lab.	MK 2
	Skills	
S1	Calculate the physical quantity related to the course.	MS 1
S2	Solve physical problems	MS 3
S3	Drive physics laws.	MS 3
	Competences	
C1	Cooperate to work effectively in the group assignments.	MC 1
C2	Show responsibility for self-learning to be aware with recent developments in physics.	MC 4

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
Midterm exam	30%	30%	40%	30%
Participation / practical applications	0	0	10%	30%
Asynchronous interactive activities	30%	30%	0	0
Final exam	40%	40%	50%	40%

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1	Physics & measurement: Length, Mass & Time, Dimensional analysis, Order of Magnitude	Lecture	1 – 22 Ref 1
2	Motion in One Dimension: Displacement, Velocity, Speed, Instantaneous Velocity and Speed, Acceleration, Constant Acceleration	Lecture	23 – 40 Ref 1
3	Vectors: Coordinate Systems, Vectors & scalars, Properties of Vectors	Lecture	53 – 64 Ref 1
4	Motion in Two Dimensions: Displacement, Velocity, Acceleration and Constant Acceleration, Projectile Motion, Uniform Circular Motion	Lecture	71-110 Ref 1

QF01/04	QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Deve physics Departmen			pdating Procedures/
5	Mass, V	aws of Motion: The Concept of Force, Inertial Weight, Newton's First, Second and Third Law of Friction	Lecture	104 – 129 Ref 1
6		Motion: Uniform Circular Motion, Nonuniform Motion	Lecture	144 – 151 Ref 1
7	The Sc	Energy & Work: Work Done by Constant Force, alar Product of Two Vectors; Work done by Force; Work done by a Spring; Work Energy n .	Lecture	127-139 Ref 1
8	Review	and Mid-Term Exam	Lecture	1 – 139 Ref 1
9	Energy,	I Energy & Conservation of Energy: Potential Conservative and NonConservative Force; vation of Energy.	Lecture	202 – 218 Ref 1
10 & 11		Momentum & Collision: Linear Momentum and its vation Impulse and Momentum & Collision in One ion.	Lecture	235 – 248 Ref 1
13		mensional Collisions; the Center of Mass Motion tem of Particles	Lecture	248 – 275 Ref 1
14	Position Angular	n of a Rigid Object about a Fixed Axis: Angular , Velocity and Acceleration Rotational Motion, , Acceleration	Lecture	276 – 304 Ref 1
15	Review	and Final Exam		

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1.	Background	On Physics & measurement:	Self-reading and
		Length, Mass & Time,	Discussion
		Dimensional analysis, Order of	
		Magnitude Notes or any text	
		book	
2.	Video 1 Solving exercises	E-learning	Discussion in the class
3.	Assignment 1: On the subjects	(Lecture notes and Ref.1)	Submit a pdf or word
	studied on the first three weeks		sheet
4.	Quiz 1 On the subjects studied on the		Submitting on the E-
		first three weeks	learning
5.	Video 2 Solving exercises		Discussion in the class
6.	Assignment 2: On the subjects	(Lecture notes and Ref.1)	Submit a pdf or word
	studied in the weeks 4 and 5		sheet
7.	Self-reading	Uniform Circular Motion.	Talk
		(Ref.1)	
8.	Video3 : Solving exercises	E-learning	Discussion in the class
9.	Video 4 : Revision	E-learning	Video
10.	midterm exam	-	-
11.	Assignment 3: On the subjects	nt 3: On the subjects (Lecture notes and Ref.1)	
	studied in the weeks 6 and 7		sheet

QF01/04	08-4.0E Course Plan for Back	nelor program - Study Plan Development a physics Department	nd Updating Procedures/
12.	Quiz 2	On the subjects studied on the subject studied after midterm exam	-
13.	Presentation of the subjec Two Dimensional Collisions	: Internet sources and the reference book	Video
14.	Video 5 Revision of all the course	e E-learning	Video
15.	Assignment 1: On the subject studied in the weeks 8 and 9	s (Lecture notes and Ref.1)	Submit a pdf or word sheet
16.	Final Exam	-	